INTERNATIONAL INDIAN SCHOOL BURAIDAH
 Worksheet for the Academic Year 2023-24
 CLASS: 12 SUBJECT: CHEMISTRY DATE: 14/05/2023

 LESSON : CH-1 SOLUTIONS

 LESSON : CH-1 SOLUTIONS}
Q. 1 Which of the following solutions shows positive deviation from Raoult's law?
(a) Acetone + Aniline
(b) Acetone + Ethanol
(c) Water + Nitric acid
(d) Chloroform + Benzene
Q. 2 Partial pressure of a solution component is directly proportional to its mole fraction. This is known as
(a) Henry's law
(b) Raoult's law
(c) Distribution law
(d) Ostawald's dilution law
Q. 3 By increasing the temperature, the vapour pressure of substance:
(a) always increases
(b) does not depend on temperature
(c) always decreases
(d) partially depends on temperature
Q. 4 Define the following terms : (a) Molality (b) Molarity
Q. 5 Define the term azeotrope?
Q. 6 State the condition resulting in reverse osmosis?
Q. 7 Differentiate between molarity and molality for a solution.How does a change in temperature influence their values?
Q.8. (a) Define the term osmotic pressure. Describe how the molecular mass of a substance can be determined by a method based on measurement of osmotic pressure?
(b) 100 mg of a protein is dissolved in just enough water to make 10.0 ml of solution. If this solution has an osmotic pressure of 13.3 mm Hg at $25^{\circ} \mathrm{C}$, what is the molar mass of the protein ($\mathrm{R}=0.0821 \mathrm{~L}$ atm mol $-1 \mathrm{~K}-1$ and $760 \mathrm{~mm} \mathrm{Hg}=1 \mathrm{~atm}$)
Q. 9 What is meant by positive and negative deviations from Raoult's law and how is the sign of $\Delta \mathrm{H}_{\text {mix }}$ related to positive and negative deviations from Raoult's law?
Q. 10 A 5% solution (by mass) of cane sugar in water has freezing point of 271 K . Calculate the freezing point of a 5% glucose in water if freezing point of pure water is 273.15 K .
Q. 11 Define reverse osmosis, write its one use.
Q. 12 Define the following terms :
(i) Mole fraction
(ii) Isotonic solutions
(iii) Van't Hoff factor
(iv) Ideal solution
Q. 1318 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is dissolved in 1 Kg of water in a saucepan. At what temperature will water boil 1.013 bar? $\left[\mathrm{K}_{\mathrm{b}}\right.$ for water $\left.=0.52 \mathrm{~K} \mathrm{Kg} \mathrm{mol}^{-1}\right]$
Q. 14 (a) State Henry's law and mention its two applications.
(b) Which of the following has higher boiling point and why.
0.1 M NaCl or 0.1 M Glucose
(c) On dissolving 19.5 g of $\mathrm{CH}_{2} \mathrm{FCOOH}$ in 500 g of water a depression of 10 C in freezing point of water is observed. Calculate the Vant Hoff factor. Given $\mathrm{K}_{\mathrm{f}}=1.86 \mathrm{~K} \mathrm{Kg} \mathrm{mol}^{-1}$.
Q. 15 (a) State Raoult's law for the solutions containing nonvolatile solute. Give its mathematical expression also.
(b) A solution containing 2 g of a non-volatile solute in 20 g of water boils at 373.52 K . Calculate the molecular mass of the solute. (K_{b} for $\mathrm{H}_{2} \mathrm{O}=0.52 \mathrm{~K} \mathrm{Kg} \mathrm{mol}^{-1}$)
Q. 16 Ethylene glycol (molar mass $=62 \mathrm{~g} \mathrm{~mol}^{-1}$) is a common automobile antifreeze. Calculate the freezing point of a solution containing 12.4 g of this substance in 100 g of water. Would it be advisable to keep this substance in the car radiator during summer if K_{b} for water $=1.86 \mathrm{~K} \mathrm{~kg}$ / mol and K_{b} for water $=0.512 \mathrm{~K} \mathrm{~kg} / \mathrm{mol}$
Q. 17 Calculate the boiling point of a solution prepared by adding 15.00 g of NaCl to 250.0 g of water. (K_{b} for water $=0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, Molar mass of $\mathrm{NaCl}=58.44 \mathrm{~g} \mathrm{~mol}^{-1}$
Q. 18 Calculate the freezing point of an aqueous solution containing 10.50 g of MgBr_{2} in 200 g of water. $\left(\right.$ Molar mass of $\left.\mathrm{MgBr}_{2}=184 \mathrm{~g} \mathrm{~mol}^{-1}\right) . \mathrm{K}_{\mathrm{f}}$ for water $\left.=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$

