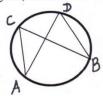
INTERNATIONAL INDIAN SCHOOL BURAIDAH

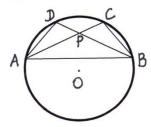

Worksheet For The Academic Year 2023-24

CLASS: <u>IX</u> SUBJECT: <u>Mathematics</u> DATE: <u>19/10/2023</u> <u>LESSON-10</u> Circles

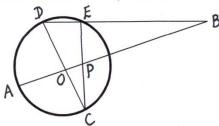
1) In the figure, O is the centre of the circle and PA = PB. Find $\triangle OPA$.

2) In the figure, if $\triangle ACB = 40^{\circ}$, find $\triangle ADB$.

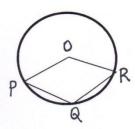
3) In the figure , if \bot OCB = 40, find \bot OBC.



- 4) If a line intersects two concentric circles with common centre O at points P, Q, R, S, prove that PQ = RS.
- 5) In the figure , \triangle AOB = 90° and \triangle ABC = 30° then find the measure of \triangle CAB.



6) Prove that 'Equal chords of a circle subtend equal angles at the centre'.


7) In the figure , \bot PBC = 15°and \bot APB = 120°, find \bot ADB.


- 8) A chord 12cm long is 8cm away from the centre of a circle. What is the length of a chord which is 6cm away in the same circle?
- 9) If two circlesintersect at two points, prove that their centres lie on the Perpendicular bisector of the common chord.
- 10) Prove that 'The angle subtended by an arc at the centre is the double the angle subtended by it at any point on the remaining part of the circle".
- 11) Three boys Raj ,Ramu and Roni are sitting at equal distance on the boundary of a circle. The radius of the circle is 40m. Find the distance between each of them.
- 12) In the figure , AB and CD pass through the centre of a circle O. If \bot OCE = 40° and \bot AOD = 75°, find \bot CDE and \bot OBE.

- 13) If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to the corresponding segments of the other chord.
- 14) If two intersecting chords of a circle make equal angles with the diameter Passing through their point of intersection ,prove that the chords are equal.
- 15) In the figure, if $\bot POR = 110^{\circ}$ then find $\bot PQR$.

16) In the figure , ABCD is a cyclic quadrilateral whose diagonals intersect at E. If \bot DBC = 70° and \bot BAC = 30°, find \bot BCD. Further if AB = AC find \bot ECD.

ANSWERS

1) 90°	8) 16cm
2) 40°	11) 40√3 m
3) 40°	12) 50°, 25°
5) 105°	15) 125°
7) 105°	16) 80°, 50°