INTERNATIONAL INDIAN SCHOOL BURAIDAH

CLASS:XII SUBJECT: PHYSICS

LESSON: SEMICONDUCTOR ELECTRONICS

- 1. At a certain temperature in an intrinsic semiconductor, the electrons and holes concentration is $1.5 \times 10^{-16} \text{ m}^{-3}$. When it is doped with a trivalent dopant, hole concentration increases to $4.5 \times 10^{22} \text{ m}^{-3}$. In the doped semiconductor, the concentration of electrons (n_e) will be (CBSE 2023)
- (a) 3×10^6 m ⁻³
- (b) $5x10^7$ m⁻³
- (c) $5x10^9$ m $^{-3}$
- (d) $6.75 \times 10^{38} \text{ m}^{-3}$
- 2. During the formation of a p-n junction (CBSE 2023)
- (a) diffusion current keeps increasing
- (b) drift current remains constant
- (c) both the diffusion current and drift current remain constant.
- (d) diffusion current remains almost constant but drift current increases till both currentsbecome equal
- 3. The formation of depletion region in a p-n junction diode is due to (CBSE 2023)
- (a) movement of dopant atoms
- (b) diffusion of the electrons and holes
- (c) drift of electrons only
- (d) drift of holes only
- 4. If a p-n junction diode is reverse biased.
- (a) the potential barrier is lowered.
- (b) the potential barrier remains unaffected.
- (c) the potential barrier is raised
- (d) the current is mainly due to majority charge carriers.
- 5. (1) (a) A germanium crystal is doped with antimony. With the help of energy-band diagram, explain how the conductivity of the doped crystal is affected.

- 6. Briefly explain the two processes involved in the formation of a p-n junction.
- (c) What will the effect of (I) forward biasing, and (II) reverse biasing be on the width of depletion layer in a p-n junction diode? (CBSE 2023)
- 7. Draw energy band diagram for an n- type and p-type semiconductor at T > 0 K. (CBSE 2023)
- 8. Explain the roles of diffusion current and drift current in the formation of the depletion layer in a p-n junction diode.
- 9. Name the device which converts an AC input signal into a DC output signal. Write the principle of working of the device.(CBSE 2022)
- 10. Explain the property of a p-n junction which makes it suitable for rectifying alternating voltages. Differentiate between a half-wave and a full-wave rectifier. (CBSE 2023)