INTERNATIONAL INDIAN SCHOOL BURAIDAH

Worksheet for the Academic Year 2023-24
CLASS: X SUBJECT: MATHEMATICS DATE: 09-04-2023
LESSON:02-POLYNOMIALS

1. The sum and product of the zeroes of a quadratic polynomial are 3 and -10 respectively, then find the quadratic polynomial (Ans: $\mathrm{x}^{2}-3 \mathrm{x}-10$)
2. Find the polynomial whose zeroes are $\frac{1}{3} \& \frac{-3}{4} \quad$ (Ans: $12 x^{2}+5 x-3$)
3. If the sum of zeroes of the quadratic polynomial $5 \mathrm{x}^{2}-\mathrm{kx}+8$ is 3 , then find the value of k
(Ans: $\mathrm{k}=15$)
4. If α and β are the zeroes of the polynomial $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, find the value $\alpha^{2}+\beta^{2}$
(Ans: $\frac{b^{2}-2 a c}{a^{2}}$)
5. If $\alpha \& \beta$ are the zeroes of the polynomial $\mathrm{x}^{2}-5 \mathrm{x}+\mathrm{k}$ such that $\alpha-\beta=1$, Find the value of $\mathrm{k} \quad$ (Ans: $\mathrm{k}=6$)
6. Find the zeroes of the quadratic polynomial $f(x)=x^{2}-3 x-28$ and verify the relationship between the zeroes and coefficients of the polynomial
(Ans: -4 and 7)
7. If the sum of the zeroes of the quadratic polynomial $k t^{2}+2 t+3$ kis equal to their product, find the value of k ?
(Ans: $\frac{-2}{3}$)
8. If α and β are the zeroes of the polynomial $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-6 \mathrm{x}+\mathrm{k}$, find the value of k , such that $\alpha^{2}+\beta^{2}=40$
(Ans: - 2)
9. If one zero of the polynomial $2 x^{2}+3 x+p$ is $\frac{1}{2}$, find the value of p and the other zero
(Ans: $\mathrm{p}=-2$, other zero $=-2$)
10.If α and β are the zeroes of the polynomial $6 \mathrm{y}^{2}-7 \mathrm{y}+2$, find the quadratic polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$
(Ans: $2 \mathrm{y}^{2}-7 \mathrm{y}+6$)
11.If one zero of $5 x^{2}+13 x+k$ is the reciprocal of the other zero, then find the value of k
(Ans: 5)
12.If p and q are the zeroes of the polynomial $4 \mathrm{y}^{2}-4 \mathrm{y}+1$. What is the value of $\frac{1}{p}+\frac{1}{q}+\mathrm{pq}$ (Ans: $\frac{17}{4}$)
