INTERNATIONAL INDIAN SCHOOL BURAIDAH

Worksheet for the Academic Year 2023-24

CLASS: X SUBJECT: MATHEMATICS DATE: 19-08-2023 LESSON:6 - TRIANGLES

Level 1:

1. In $\triangle \mathrm{ABC}, \mathrm{D}$ and E are the points on the sides AB and AC respectively such that $\mathrm{DE} \| \mathrm{BC}$
a) If $\mathrm{AD}=2.5 \mathrm{~cm}, \mathrm{BD}=3.0 \mathrm{~cm}$ and $\mathrm{AE}=3.75 \mathrm{~cm}$, Find the length of AC
b) IF $\mathrm{AD}=4 \mathrm{~cm}, \mathrm{AE}=8 \mathrm{~cm}, \mathrm{DB}=\mathrm{x}-4$ and $\mathrm{EC}=3 \mathrm{x}-19$, Find x ?

$$
(\text { Ans: a) } 8.25 \mathrm{~cm} \quad \text { b) } 11 \mathrm{~cm} \text {) }
$$

2. In $\triangle \mathrm{ABC}, \mathrm{D}$ and E are the points on the sides AB and AC respectively.
$\mathrm{AB}=12 \mathrm{~cm}, \mathrm{AD}=8 \mathrm{~cm}, \mathrm{AE}=12 \mathrm{~cm}, \mathrm{AC}=18 \mathrm{~cm}$. Show that $\mathrm{DE} \| \mathrm{BC}$
3. In the figure, If $\mathrm{AD}=6 \mathrm{~cm}, \mathrm{DB}=9 \mathrm{~cm}, \mathrm{AE}=8 \mathrm{~cm}, \mathrm{EC}=12 \mathrm{~cm}$ and
$\angle A D E=48^{\circ}$. Find $\angle A B C$

4. In the given figure, DEFG is a square and $\angle \mathrm{BAC}=90^{\circ}$. Show that $\mathrm{FG}^{2}=\mathrm{BG} \times \mathrm{FC}$

5. In the fig, $\mathrm{DE} \| \mathrm{AC}$ and $\mathrm{DC} \| \mathrm{AP}$, Prove that $\frac{B E}{E C}=\frac{B C}{C P}$

6. In the figure $\triangle \mathrm{ACB} \sim \triangle \mathrm{APQ}$. If $\mathrm{BC}=8 \mathrm{~cm}, \mathrm{PQ}=4 \mathrm{~cm}, \mathrm{BA}=6.5 \mathrm{~cm}, \mathrm{AP}=$ 2.8 cm , Find CA and AQ ?

(Ans: $\mathrm{CA}=5.6 \mathrm{~cm}, \mathrm{AQ}=3.25 \mathrm{~cm}$)
7. In the figure $\angle \mathrm{A}=\angle \mathrm{C}$, then Prove that $\Delta \mathrm{AOB} \sim \Delta \mathrm{COD}$

8. Two triangles BAC and BDC , right angled at A and D respectively, are drawn on the same base BC and on the same side of BC. If AC and DB intersect at P , Prove that $\mathrm{AP} \times \mathrm{PC}=\mathrm{DP} \times \mathrm{PB}$.
9. It is given that $\Delta \mathrm{ABC} \sim \Delta \mathrm{EDF}$ such that $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm}, \mathrm{DF}=$ 15 cm and $\mathrm{DE}=12 \mathrm{~cm}$, Find the lengths of the remaining sides of the triangles.
(Ans: $\mathrm{BC}=6.25 \mathrm{~cm}$ and $\mathrm{EF}=16.8 \mathrm{~cm}$)
10.In the figure If $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ and their sides of the lengths (in cm) as marked along their sides, then find the lengths of the sides of each triangle.

(Ans: $\mathrm{AB}=9 \mathrm{~cm}, \mathrm{BC}=12 \mathrm{~cm}, \mathrm{AC}=15 \mathrm{~cm}, \mathrm{EF}=24 \mathrm{~cm}, \mathrm{DF}=30 \mathrm{~cm}$)

Level 2:

11.In the figure $\angle \mathrm{ACB}=\angle \mathrm{CDA}, \mathrm{AC}=8 \mathrm{~cm}$ and $\mathrm{AD}=3 \mathrm{~cm}$, Find BD ?

(Ans: $\frac{55}{3}$)
12.In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$, with D on AB and E on AC . If $\frac{A D}{D B}=\frac{2}{3}$, find $\frac{B C}{D E}$

(Ans: $\frac{5}{2}$)
13. Legs (sides other than the hypotenuse) of a right triangle are of lengths 16 cm and 8 cm . Find the lengths of side of the largest square that can be inscribed in the triangle.

(Ans: $\frac{16}{3}$)
14.A 15 meters high tower casts a shadow of 24 meters long at a certain time and at the same time a telephone pole casts a shadow of 16 meters high.
Find the height of the telephone pole
(Ans: 10m)

