INTERNATIONAL INDIAN SCHOOL BURAIDAH

Work Sheet - 2025-26

CLASS: X

SUBJECT: MATHEMATICS Chapter 02 - Polynomials

- 1. The quadratic polynomial, the sum of whose zeroes is-5 and their product is 6, $(Ans: x^2 + 5x + 6)$
- 2. Find the zeroes of the polynomial x^2 3x -m(m+3). (Ans: -m, m+3)
- 3. Find the zeroes of given polynomial P(x)= $4\sqrt{3} x^2 + 5x 2\sqrt{3}$ (Ans: $-\frac{2}{\sqrt{3}}$ and
- 4. If one zero of the polynomial $x^2 + 3x + k$ is 2, then find the value of k (Ans:-10)
- 5. If 2 is a zero of polynomial $p(x) = 4x^2 + 2x 5a$, then find the value of a. (Ans: 4)
- 6. If the zeroes of the quadratic polynomial $x^2 + (a+1)x + b$ are 2 and -3 then the value of a and b (Ans: a=0, b=-6)
- 7. If α and β are the zeroes of $4x^2$ -4x -3, then find the value of $\frac{1}{\alpha} + \frac{1}{\beta}$ (Ans: $\frac{-4}{\alpha}$)
- 8. If the sum of the zeroes of the quadratic polynomial $kt^2 + 2t + 3k$ is equal to their product, Find the value of k (Ans: - 2/3)
- 9. If the sum of roots of the polynomial $4x^2-2x + (k-4)$ is half of their product, then
- the value of k is

 10. If one zero of the polynomial $p(x) = 6x^2 + 37x (k-2)$ is reciprocal of the other, then (Ans: k = -4)
- 11. If $\alpha \& \beta$ are the zeroes of the polynomial $x^2 5x + k$ such that $\alpha \beta = 1$, Find the value of k (Ans: k = 6)
- 12. If 2 and 3 are zeroes of polynomial $3x^2 2kx + 2m$, then find the value of k and m

(Ans: m = 9 & k =
$$\frac{15}{2}$$
)

- 13. Find the zeroes of the quadratic polynomials and verify the relationship between the zeroes and their coefficients.
 - (Ans:- $3\sqrt{2}$, $\sqrt{2}$) a) $x^2 + 2\sqrt{2}x - 6$
 - (Ans: $-\sqrt{3}$, $\frac{-7}{\sqrt{2}}$) b) $\sqrt{3}x^2 + 10x + 7\sqrt{3}$
- 14. Find the quadratic polynomial whose sum and product of the zeroes are:

$$-2\sqrt{3}$$
, -9 (Ans: $x^2 + 2\sqrt{3}x - 9$)

- 15. If one zero of $5x^2 + 13x + k$ is the reciprocal of the other zero, then find the value of k (Ans: 5)
- 16. If x + k is the HCF of $x^2 2x 15$ and $x^3 + 27$, then find the value of k. (Ans: 3)
- 17. The graph y = p(x) is given below, for some polynomials p(x). Find the number of zeroes of p(x) in each case:

(Ans: i) 0 ii) 5 iii) 4 iv) 3)

- 18. If α and β are the zeroes of the quadratic polynomial $f(x) = x^2 1$, Find the quadratic polynomial whose zeroes are $\frac{2\alpha}{\beta}$ and $\frac{2\beta}{\alpha}$ (Ans: k (x² + 4x + 4))
 - 19. If α and β are the zeroes of the quadratic polynomial p(x) = 4x²-5x 1, Find the value of $\alpha^2\beta + \alpha\beta^2$. (Ans: $\frac{-5}{16}$)
- 20. If the sum of the squares of zeroes of the quadratic polynomial $f(x) = x^2 8x + k$ is 40, Find the value of k (Ans: 12)
- 21. If $f(x) = x/x^2 + 1$, then find the f(1/x) and f(x-1) (Ans: $x/x^2 + 1$, $x-1/x^2 2x + 2$)
- 22. Find the zeroes of the quadratic polynomial $7y^2 \frac{11}{3}y \frac{2}{3}$ and verify the relation between the zeroes and the coefficients. (Ans: $\frac{2}{3}$, $-\frac{1}{7}$)
- 23. If α and β are the zeroes of the quadratic polynomial f(x) =x²- p(x+1) -c,then show that $(\beta+1)(\alpha+1)=1-c$

24. Find the value of p for which one zero	of the polynomial $px^2 - 14x + 8$ is 6 times the
other.	(Ans: p=3)