#### INTERNATIONAL INDIAN SCHOOL BURAIADAH

# **WORK SHEET-2025-26**

## **SUBJECT: MATHS**

### **CHAPTER: VECTORS ALGEBRA**

MCQ

1-The Area of triangle formed by the vectors O,A ,B where  $\overrightarrow{OA} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$  and  $\overrightarrow{OB} = -3\hat{\imath} - 2\hat{\jmath} + \hat{k}$ 

- (a)  $3\sqrt{5}$  sq unit (b)  $5\sqrt{5}$  sq unit (c)  $6\sqrt{5}$  sq unit

2-The position vector of the point which divides the joining of points  $2\vec{a}$  -  $3\vec{b}$  and  $\vec{a}$  + $\vec{b}$  in the ratio 3:1

- (a)  $(3\vec{a} 2\vec{b})/2$
- (b)  $(7\vec{a} 8\vec{b}) / 4$
- (c)  $3\vec{a}$  /4
- (d)  $5\vec{a}$  /4

3-The direction cosine of the vector  $\overrightarrow{BA}$  =, where coordinates of A and B are (1,2,-1) and (3,4,0)

- (a) -2,-2,-1
- (b) -2/3 , -2/3 ,-1/3 (c) 2,2,1
- (d) 2/3 , 2/3 ,1/3

4-The value of p for which the vectors =  $2\hat{i} + p\hat{j} + \hat{k}$  and =  $-4\hat{i} - 6\hat{j} + 26\hat{k}$  are perpendiculat to each other is,

- (a) 3
- (b) -3

- (c) -17/3
- (d) 17/3

5-  $\vec{a}$  and  $\vec{b}$  are two vectors such that the projection of  $\vec{a}$  on  $\vec{b}$  is 0.The angle between  $\vec{a}$  and  $\vec{b}$  is

- (a)  $\frac{\pi}{2}$
- (b)  $\pi$

(c)  $\frac{\pi}{2}$ 

(d)  $\frac{5\pi}{2}$ 

6- In  $\triangle ABC$ ,  $\overrightarrow{AB} = \hat{\imath} + \hat{\jmath} + 2\hat{k}$  and  $\overrightarrow{AC} = \widehat{3}\hat{\imath} - \hat{\jmath} + 4\hat{k}$ . If D is midpoint of BC, then vector  $\overrightarrow{AD}$  is equal to

- (a)  $4\hat{i} + 6\hat{k}$  (b)  $2\hat{i} 2\hat{j} + 2\hat{k}$  (c)  $\hat{i} \hat{j} + \hat{k}$  (d)  $2\hat{i} + 3\hat{k}$

7-Two vectors  $\vec{a} = a_1\hat{\imath} + a_2\hat{\jmath} + a_3\hat{k}$  and  $\vec{b} = b_1\hat{\imath} + b_2\hat{\jmath} + b_3\hat{k}$  are collinear if

(a)  $a_1b_1 - a_2b_2 + a_3b_3 = 0$ 

(b)  $a_1/b_1 = a_2/b_2 = a_3/b_3$ 

(c)  $a_1=b_1$ ,  $a_2=b_2$ ,  $a_3=b_3$ 

(d)  $a_1+a_2+a_3=b_1+b_2+b_3$ 

8-Unit vector along  $\overrightarrow{PQ}$ , where coordinate of P and Q respectively are (2,-1,-1) and (4, 4, -7)

- (a)  $2\hat{i} + 3\hat{j} 6\hat{k}$  (b)  $-2\hat{i} 3\hat{j} + 6\hat{k}$  (c)  $-\frac{2\hat{i}}{7} \frac{3\hat{j}}{7} + \frac{6\hat{k}}{7}$  (d)  $\frac{2\hat{i}}{7} + \frac{3\hat{j}}{7} \frac{6\hat{k}}{7}$

**Assertion - Reason Questions** 

The following questions consist of two statements -Assertion (A) and Reason(R) . Answer these questions selecting the appropriate option given below:

(a) Both A and R true and R is the correct explanation for A.

- (b) Both A and R are true but R is not the correct explanation for A
- (c) A is true but R is false.
- (d) A is false but R is true.

1-Assertion (A): Direction cosines of vector  $\vec{a} = \hat{i} + \hat{j} - 2\hat{k}$  are  $\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}$ 

Reason (R): If vector  $\vec{r} = a\hat{\imath} + b\hat{\jmath} + c\hat{k}$  then its direction cosines are  $\frac{a}{|\vec{r}|}, \frac{b}{|\vec{r}|}, \frac{c}{|\vec{r}|}$ Where  $|\vec{r}| = \sqrt{a^2 + b^2 + c^2}$ 

2-Assertion (A) If  $|\vec{a} \ X \vec{b}| = 1$  and  $|\vec{a} \ . \vec{b}| = \sqrt{3}$  then angle between  $\vec{a}$  and  $\vec{b}$  is  $\frac{\pi}{6}$  Reason (R) :  $|\vec{a} \ X \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$  and  $|\vec{a} \ . \vec{b}| = |\vec{a}| |\vec{b}| \cos \theta$ .

#### **Subjective Questions:**

1-Show that for any two non-zero vectors  $\vec{a}$  and  $\vec{b}$ ,  $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$  iff  $\vec{a}$  and  $\vec{b}$  are perpendicular vectors . (CBSE-2020)

2-If  $\vec{r}=3\hat{\imath}-\widehat{2j}+6\hat{k}$  , find the value of  $(\vec{r} \times j).(\vec{r} \times \hat{k})$ -12 (CBSE-2023)

3-X ad Y are two points with position vectors  $3\vec{a} + \vec{b}$  and  $\vec{a} - 3\vec{b}$  respectively.write the position vector of a point Zwhich divides the line segment XY in the ratio 2:1externally. (CBSE-2019)

4-Let  $\vec{a} = \hat{\imath} + 2\hat{\jmath} - 3\hat{k}$  and  $\vec{b} = 3\hat{\imath} - \hat{\jmath} + 2\hat{k}$  be two vectors .Show that vectors ( $\vec{a} + \vec{b}$ ) and ( $\vec{a} - \vec{b}$ ) are perpendicular to each other.(CBSE-2019)

5-If the vectors  $\vec{a}$  and  $\vec{b}$  are such that  $|\vec{a}|$  =3 ,  $|\vec{b}|$  =2/3 and  $\vec{a}$  X  $\vec{b}$  is a unit vector ,then find the angle between  $\vec{a}$  and  $\vec{b}$  .(CBSE-2023)

6-Find the Area of a parallelogram whose adjacent sides are determined by the vectors  $\vec{a} = \hat{\imath} - \hat{\jmath} + 3\hat{k}$  and  $\vec{b} = 2\hat{\imath} - 7\hat{\jmath} + \hat{k}$  (CBSE-2023)

7-If  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  are three non -zero unequal vectors such that  $\vec{a}$ .  $\vec{b}$  =  $\vec{a}$ .  $\vec{c}$  then find the angle between  $\vec{a}$  and  $\vec{b}$  –  $\vec{c}$  (CBSE-2023)

8-Write the projection of the vectors  $(\vec{b} + \vec{c})$  on the vector  $\vec{a}$ , where  $\vec{a} = 2\hat{\imath} - 2\hat{\jmath} + \hat{k}$ ,  $\vec{b} = \hat{\imath} + 2\hat{\jmath} - 2\hat{k}$  and  $\vec{c} = 2\hat{\imath} - \hat{\jmath} + 4\hat{k}$  (CBSE-2022)

9-The scalar product of the vector  $\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$  with a unit vector along the sum of the vectors  $\vec{b} = 2 \hat{\imath} + 4 \hat{\jmath} - 5 \hat{k}$  and  $\vec{c} = \lambda \hat{\imath} + 2 \hat{\jmath} + 3 \hat{k}$  is equal to 1 .Find the value of  $\lambda$  and hence find the the unit vector along  $\vec{b} + \vec{c}$  (CBSE-2019)

10-The two adjacent sides of parallelogram are represented by  $2\hat{\imath}-4\hat{\jmath}-5\hat{k}$  and  $2\hat{\imath}+2\hat{\jmath}+3\hat{k}$ . Find the unit vectors parallel to its diagonals. Using the diagonal vectors ,find the area of the parallelogram also. (CBSE-2022)

11-Let  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{c}$  be three vectors such that  $|\vec{a}|$  =1,  $|\vec{b}|$  = 2 and  $|\vec{c}|$  = 3 If the projection of  $\vec{b}$  along  $\vec{a}$  is equal to the projection of  $\vec{c}$  along  $\vec{a}$  and  $\vec{b}$ ,  $\vec{c}$  are perpendicular to each other ,then find  $|3\vec{a}-2\vec{b}+2\vec{c}|$  (CBSE-2019)

12-If  $\vec{a} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$ ,  $\vec{b} = 2\hat{\imath} + 4\hat{\jmath} - 5\hat{k}$  represent two adjacent sides of a paraleelogram find unit vector parallel to the diagonals of the parallelogram .(CBSE-2020)

13-Find the unit vector perpendicular to each of the vectors  $\vec{a}=4\hat{\imath}+3\hat{\jmath}+\hat{k}$  ,  $\vec{b}=2\hat{\imath}-\hat{\jmath}+2\hat{k}$  (CBSE-2020)

\*\*\*\*\*\*\*