CLASS-12-PHYSICS WORKSHEET -1

CHAPTER-1

ELECRTIC CHARGES AND FIELDS

- 1. An infinite line charge produces a field of 9 x 104 N/C at a distance of 2cm. Calculate the linear charge density.
- 2. Four point charges qA = 2 μ C, qB = -5μ C, qC = 2 μ C, and qD = -5μ C are located at the corners of a square ABCD of side 10 cm. What is the force on a charge of 1 μ C placed at the centre of the square?
- 3. Three small identical conducting spheres have charges $-3 \times 10^{-12}~$ C, $8 \times 1010^{-12}~$ C and $4 \times 1010^{-12}~$ C respectively. They are brought in contact and then separated. Calculate (i) charge on each sphere after separation (ii) number of electrons in excess or deficit on each sphere after separation .
- 4. A point charge +q is placed at the origin. A second point charge +9q is placed at (d,0,0) in Cartesian coordinate system. The point in between them where the electric field vanishes is:
- 5. A hollow conducting sphere of radius 8cm is given a charge 16μ C.What is the electric field intensity i) at the centre of the sphere ii) on the outer surface of the sphere and iii) at a distance of 16cm from the centre of the sphere?
- 6. Four charges of -2q, q, -q and 2q are at the corners of a square ABCD ,of side 20cm, find the magnitude and the direction of the electric field at the centre of the square. Take q = 5 mc
- 7. A point charge causes an electric flux of -1.0×10^3 Nm² C⁻¹ to pass through a spherical Gaussian surface of 10.0 cm radius centred on the charge.
- (a) If the radius of the Gaussian surface were doubled, how much flux would pass through the surface? (b) What is the value of the point charge?
- 8. A conducting sphere of radius 10 cm has an unknown charge. If the electric field 20 cm from the centre of the sphere is 1.5×10^3 N C⁻¹ and points radially inward. What is the net charge on the sphere?
- 9. An oil drop of 12 excess electrons is held stationary under a constant electric field of 2.55×10^4 N C⁻¹ in Millikan's oil drop experiment. The density of the oil is 1.26 g cm⁻³. Estimate the radius of the drop. (g = 9.81 m s⁻²; e= 1.6×10^{-19} C)
- 10. (a) Two insulated charged copper spheres A and B have their centres separated by a distance of 50 cm. What is the mutual force of electrostatic repulsion if the charge on each is 6.5×10^{-7} C? The radii of A and B are negligible compared to the distance of separation.
- (b) What is the force of repulsion if each sphere is charged double the above amount, and the distance between them is halved?