CLASS-XII PHYSICS WORKSHEET

CHAPTER -3

CURRENT ELECTRICITY

- 1.A copper wire of 10^{-6} m² area of cross section, carries a current of 2 A. If the number of electrons per cubic meter is 8×10^{28} , calculate the current density and average drift velocity.
- 2.The resistance of a nichrome wire at 0° C is 10Ω . If its temperature coefficient of resistance is $0.004/^{\circ}$ C, find its resistance at boiling point of water. Comment on the result.
- 3. The rod given in the figure is made up of two different materials.

Both have square cross sections of 3 mm side. The resistivity of the first material is 4 x 10^{-3} Ω .m and it is 25 cm long while second material has resistivity of 5 x 10^{-3} Ω .m and is of 70 cm long. What is the resistivity of rod between its ends?

- 4.A cell supplies a current of 0.9 A through a 2 Ω resistor and a current of 0.3 A through a 7 Ω resistor. Calculate the internal resistance of the cell.
- 5.If an electric field of magnitude 570 N/C, is applied in the copper wire, find the acceleration experienced by the electron.
- 6.A copper wire of cross-sectional area 0.5 mm² carries a current of 0.2 A. If the free electron density of copper is 8.4×10^{28} m-3 then compute the drift velocity of free electrons.
- 7.Determine the number of electrons flowing per second through a conductor, when a current of 32 A flows through it.
- 8. The resistance of a wire is 20 Ω . What will be new resistance, if it is stretched uniformly 8 times its original length?
- 9. If the resistance of coil is 3 Ω at 20 $^{\circ}$ C and α = 0.004/0C then determine its resistance at 100 $^{\circ}$ C.
- 10. Resistance of a material at 10°C and 40°C are 45 Ω and 85 Ω respectively. Find its temperature coefficient of resistance.