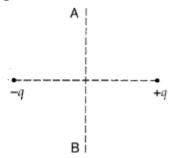
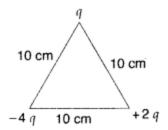

INTERNATIONAL INDIAN SCHOOL BURAIDAH

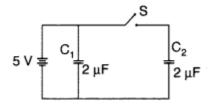

CLASS:XII SUBJECT:PHYSICS WORKSHEET

LESSON: ELECTROSTATIC POTENTIAL AND CAPACITANCE

- 1. Two charges $2\mu C$ and $-2\mu C$ are placed at points A and B 5 cm apart. Depict an equipotential surface of the system.
- 2. The given graph shows variation of charge 'q' versus potential difference 'V' for two capacitors C_1 and C_2 . Both the capacitors have same plate separation but plate area of C_2 is greater than that of C_1 . Which line (A or B) corresponds to C_1 and why?

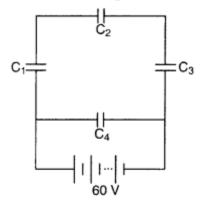


3. A charge 'q' is moved from a point A above a dipole of dipole movement 'p' to a point B below the dipole in equatorial plane without acceleration. Find the work done in the process.



- 4. Derive the expression for the electric potential at any point along the axial line of an electric dipole
- 5. Two point charges 20 x 10-6 C and -4 X 10-6 C are separated by a distance of 50 cm in air.
 - (i) Find the point on the line joining the charges, where the electric potential is zero.
 - (ii) Also find the electrostatic potential energy of the system

6. Calculate the work done to dissociate the system of three charges placed on the vertices of a triangle as shown. (Delhi 2008)


7. Figure shows two identical capacitors C_1 and C_2 , each of 2 μF capacitance, connected to a battery of 5 V. Initially switch 'S' is left open and dielectric slabs of dielectric constant K=5 are inserted to fill completely the space between the plates of the two capacitors. How will the charge and

- (ii) potential difference between the plates of the capacitors be affected after the slabs are inserted?
- 8. Net capacitance of three identical capacitors in series is 1 pF. What will be their net capacitance if connected in parallel?

 Find the ratio of energy stored in the two configurations if they are both connected to the same source
- 9. Draw a plot showing the variation of
 - (i) electric field (E) and
 - (ii) electric potential
 - (iii) with distance r due to a point charge Q
- **10.**A network of four capacitors, each of capacitance 30 pF, is connected across a battery of 60 V as shown in the figure.

Find the net capacitance and the energy stored in each capacitor.

