<u>INTERNATIONAL INDIAN SCHOOL BURAIDAH</u>

Worksheet For The Academic Year 2025-26

CLASS: <u>IX</u> SUBJECT: <u>Mathematics</u> DATE: <u>29/06/2025</u> LESSON-7 Triangles

- 1) Write the 5 rules of congruence of triangles used.
- 2) In SAS rule the angle between the sides is called the _____ angle.
- 3) In $\triangle ABC$ and $\triangle DEF$, if AB = DE and $\triangle A = \triangle D$, what will be the third condition for the two triangles to be congruent based on SAS rule?
- 4) In the figure, if $AB \parallel CD$ and AB = CD, show that AD = BC.

- 5) If $\triangle PQR \cong \triangle abc$ such that PQ = 5cm, $\triangle Q = 40^{\circ}$ and $\triangle P = 80^{\circ}$, find $\triangle C$.
- 6) If two triangles are such that XY = DF, YZ = FE and XZ = DE, express the congruence using notation and mention the rule used.
- 7) In the figure, the diagonal AC of quadrilateral ABCD bisects \bot BAD and \bot BCD. Prove that BC = CD.

8) In the figure , BA \perp CA , RP \perp QP , AB = PQ and BR = CQ. Prove that AC = PR.

9) In the figure , if $\bot BAC = \bot ABD$ and $\bot ACB = \bot BDA$, Show that AD = BC.

10) In the figure, ABCD is a quadrilateral in which AD = BC and

 \bot DAB = \bot CBA. Prove that (i) \triangle ABD \cong \triangle BAC

(ii) BD = AC (iii) $\triangle ABD = \triangle BAC$.

- 11) In the figure, PQ = PS, RQ = RS then show that
 - (i) $\triangle PQR \cong \triangle PSR$ (ii) $\triangle RQT \cong \triangle RST$

12) In the figure , $\triangle ABD$ and $\triangle ABC$ are such that AD = BC , $\bot 1 = \bot 2$, $\bot 3 = \bot 4$. Prove that BD = AC.

- 13) Prove that each angle of an equilateral triangle is 60° .
- 14) ABC is a right angled triangle in which $\bot A = 90^{\circ}$ and AB = AC. Find $\bot B$ and $\bot C$.

15) In the given figure , AB = AC and BE & CF are bisectors of \bot B and \bot C Respectively. Prove that \triangle EBC \cong \triangle FCB.

