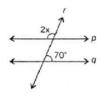
INTERNATIONAL INDIAN SCHOOL BURAIDAH

Term-1 Examination Sample Paper (2025-2026)

Class IX Mathematics

Date:21-09-2025 Duration: 3hrs Max. Marks: 80M

General Instructions:


- 1. The question paper has 5 sections: A, B, C, D, and E.
- Section A consists of 20 MCQs of 1 mark each, out of which Qs 19 & 20 are Assertion Reasoning questions.
- 3. Section B consists of 5 questions of 2marks each with 2 choice questions.
- 4. Section C consists of 6 questions of 3 marks each, with 2 choice questions.
- 5. Section D consists of 4 questions of 5 marks each, with 2 choice questions
- 6. Section E has 3 Case study-based questions of 4 marks with sub-parts of 1, 1, 2 marks and a choice is provided for 2-mark questions.

Section A

Choose the correct option from the brackets:

 $(20 \times 1 = 20 \text{ M})$

- The decimal representation of an irrational number is:
 a) terminating
 b) non-terminating recurring
 c) non-terminating non-recurring
 d) finite
- 2. The degree of a non-zero constant polynomial is
 - a) 0
- b) 2
- c) 3
- d) 1
- 3. The X-axis and Y-axis divide the plane into ____ quadrants.
 - a) 2
- b) 3
- c) 4
- d) 5
- 4. In the given figure p $\|q$, the value of x is

- a) 35°
- b) 55°
- c) 70°
- d) 110°

5. A triangle cannot have:

	a) two right	angles	b) one obtus	e angle	c) three acu	te angles	d) all angles equal			
6.	A line has dimensions.									
	a) 0	b) 1		c) 2	d) 3					
7.	A quadrilater	ral in wh	ich diagonals	bisect ea	ach other but	are not ed	qual is a:			
	a) square	b)	rectangle	c) rh	ombus	d) tra	apezium			
8.	√50 × √2 is e	qual to:								
	a) √52 b)	100	c) 1	0		d) 5√2				
9.	If two angles	of a tria	ingle are com	olementa	ary, then the	triangle is:				
	a) acute an	gled b)	right angled	c) obtu	ise angled	d) equila	nteral			
10.	10. 'Lines are parallel if they do not intersect' is stated in the form of									
	a) an axiom b) a definition c) a postulate d) a proof									
11.	$4x^2 + 3x^{-1} + 7$	is:								
	a) polynomial b) not a polynomial c) quadratic polynomial d) cubic polynomial									
12.	12. The expansion of $(a + b)^2$ is:									
	a) $a^2 + b^2$ b) $a^2 + 2ab + b^2$				c) $a^2 - 2ab + b^2$ d) $a^2 + ab + b^2$					
13.	13. If $x - 1$ is a factor of $2x^2 + 6x - 4k$, then the value of k is									
	a)-2	b)	2	c) 0		d) 1				
14.	14. The abscissa of a point is positive in:									
	a) first and t	hird qua	adrants	rst and fourth	and fourth quadrants					
	c) second and third quadrants				d) third ar	d) third and fourth quadrants				
15. A diagonal of a rectangle is inclined to one side of the rectangle at 25°. The acute										
	angle between the diagonals is a) 55° b) 50° c) 40°			0°	d) 25°					
16.	If $3^x = 81$, the	en x =								
	a) 2	b) 3	c) 4		d) 5					
1	7. A polynomial of degree 4 will have at most zeroes.									
	a) 3 l	b) 4	c) 2		d) 1					
1	18. The ordinate of all points on the X-axis is:									
	a) 0	b) 1	c) a	ny numb	oer d) −1					

19. Assertion: If p(x) = ax + b, $\neq 0$ is a linear polynomial, then x = -b/a is the only zero of p(x).

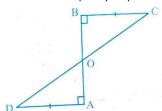
Reason: A linear polynomial has one and only one zero.

- a) A and are R true and R is the correct explanation of A
- b) A and R are true, but R is not the correct explanation of A
- c) A true, R false
- d) A false, R true
- 20. Assertion: $\triangle XYZ \cong \triangle PQR$ if XY = PQ, YZ = QR and $\angle Y = \angle Q$.

Reason: SAS rule of congruence applies.

- a) A and are R true and R is the correct explanation of A
- b) A and R are true, but R is not the correct explanation of A
- c) A true, R false
- d) A false, R true

Section B

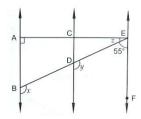

Answer the following Questions:

 $(5 \times 2 = 10 \text{ marks})$

21. a) Find two irrational numbers between $\sqrt{2}$ and $\sqrt{3}$.

OR

- b) Represent $\sqrt{5}$ on the number line
- 22. Solve x 15 = 40 using Euclid's Axiom. State the axiom used.
- 23. AD and BC are equal perpendiculars to a line segment AB. Show that CD bisects AB



24. a)
$$\sqrt[4]{81} - \sqrt[3]{125} + \sqrt[5]{32}$$

OR

- b) Evaluate 105 × 95 using suitable identity
- 25. Show that each angle of a rectangle is a right angle

26. In the given figure AB∥ CD and CD ∥ EF. Also, EA ⊥ AB. If ∠BEF = 55° find the values of X, y, Z

27. a) Expand $(3a - 7b - c)^3$

OR

b)
$$27x^3 + y^3 + z^3 - 9xyz$$

28. Identify in which quadrant the following points lie:

b)
$$(4, -5)$$
 c) $(-2, -4)$

29. a) BE and CF are two equal altitudes of a Δ ABC. Using RHS congruency rule, prove that \triangle ABC is isosceles

OR

- b) In \triangle ABC, AB = AC, and the bisectors of angles B and C intersect at O. Prove that BO = CO and the ray AO is the bisector of ∠ BAC
- 30. ΔABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersect AC at D. Show that
 - 1) D is the midpoint of AC
 - 2) MD \perp AC
- 31. If $f(x) = x^2 2x + 1$, find f(3) + f(-1) f(0)

Section D

Answer the following Questions:

 $(4 \times 5 = 20M)$

- 32. ABCD is a rectangle and P, Q, R, S are mid-points of sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus
- 33. a) Find the values of a and b, if $\frac{5+2\sqrt{3}}{7+4\sqrt{3}} = a + b\sqrt{3}$

b) Simplify:
$$(\frac{81}{16})^{\frac{-3}{4}} \times (\frac{25}{9})^{\frac{-3}{2}} \times (\frac{5}{2})^{-3}$$

34. Factorise:
$$x^3 - 6x^2 + 11x - 6$$

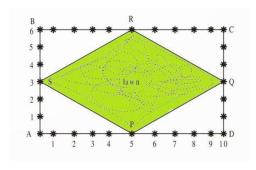
35. a) Represent the following data by histogram:

Weekly	10-15	15-20	20-25	25-30	30-40	40-60	60-80
Wages (₹)							
No of	7	9	8	5	12	12	8
workers							

OR

b) For the following data, draw a frequency polygon:

marks	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
No. of	5	10	4	6	7	3	2	3
students								

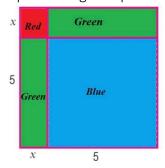

Section E

Answer the following Questions:

 $(3 \times 4 = 12 \text{ marks})$

Case study 1:

36. The Class IX students at a secondary school in Krishnagar have been allotted a rectangular plot of land for their gardening activity. Sapling of Gulmohar is planted on the boundary at a distance of 1m from each other. There is a lawn PQRS in the ground as shown in below figure:


- a) What are the co-ordinates of C, taking A as the origin (1M)
- b) What are the co-ordinates of R, taking A as the origin (1M)
- c) Find the side of the lawn

OR (2M)

d) Find the area of the lawn

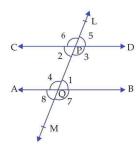
Case study 2:

37. Amar formed a square using four pieces of origami, as shown in the figure:

Page 5 of 6

a) Write the polynomial which describe the area of the given square?

R (2M)


b) If the area of the square is given by $x^2 - 10x + 25$, then what will be the side of the square?

c) If
$$p(y) = y^2 - 2y + 1$$
, then find the value of $p(y) + p(-y)$ (1M)

d) What is the degree of the polynomial $x^3 + 2x^2 + 3x + 4$ (1M)

Case study 3:

38. Two lines are parallel to each other, if the distance between these 2 lines always remains constant throughout and they never meet. There are various examples of parallel lines that we see in our daily life like railway line, 2 steps ladder, opposite sides of a table etc. A line which cuts a pair of parallel lines is called a transversal as shown in the figure:

a) If
$$\angle 5 = 65^{\circ}$$
, then value of $\angle 8$ (1M)

b)
$$\angle 2 + \angle 4 = 180^{\circ}$$
. Write the reason (1M)

c) $\angle 6 = 2x$ and $\angle 1 = 70^{\circ}$, then find the value of x

d) If $\angle 6: \angle 5 = 2:3$, then find the value of $\angle 1$